The TauP Toolkit:
Flexible Seismic Travel-Time and Raypath Utilities

Version 1.0
Documentation

H. Philip Crotwell, Thomas J. Owens, Jeroen Ritsema
Department of Geological Sciences
University of South Carolina
http://www.geol.sc.edu/seis/software
crotwell@seis.sc.edu

Copyright 1998 Board of Trustees of the University of South Carolina,
All Rights Reserved

User’s Guide i

Contents
1 Overview 1
2 Distribution 2
2.1 What and Where e e e e 2
2.2 Pros and Cons of the Current Release 2
2.3 Future Plans L e e e e e 3
3 Tools 4
3.1 Default Parameters 4
3.2 TauP_Time e e 5
3.3 TauP_Pierce. e e e 7
34 TauP Path e e 8
3.5 TauP_Curve e e e e e e e e 9
3.6 TauP_SetSac e e e e e 10
3.7 TauP_Table e e e e e e 11
3.8 TauP_Create 12
3.9 TauP_Peek 13
4 Phase naming in TauP 14
5 Creating and Saving Velocity Models 17
5.1 Velocity Model Files e 17
5.2 Using Saved Tau Models o L e 18
6 Programming Interface 20
6.1 Java e e e e e e e e e e e e e 20
6.2 Jacl . ..o 21
6.3 C . o 23
7 Examples 26
7.1 Velocity Model Files e 26

7.2 Creating The Model e 26

User’s Guide

7.3 Travel Times
7.4 Pierce Points
75 Path

7.6 Travel Time Curves

A Installing

B Troubleshooting

ii

27
28
29
29

30

32

User’s Guide iii

Disclaimer

Portions of this software are copyrighted by the
University of South Carolina,

Sun Microsystems, Inc.,

and other parties.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF,
EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED
ON AN “AS IS” BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

User’s Guide 1

1 Overview

The algorithms employed within the TauP package are based on the method of Buland and Chapman
(1983). The IASPEI ttimes package is a widely-used implementation of the methodology.

The main benefit of this new package is a marked increase in flexibility. It will handle many types of
velocity models, instead of being limited to just a few. A new phase parser allows times to be computed
for virtually any seismic phase. The use of Java enables this code to be run on a variety of machine
and operating system types, without recompiling. This package also offers the extraction of derivative
information, such as ray paths through the earth, pierce and turning points, as well as travel time curves.

A paper has been submitted to Seismological Research Letters, (Crotwell et al., 1998), that is intended
to be used as a companion to this manual. While this manual mainly focuses on the praticalities of using
the codes, the paper is able togo into more detail on the methodology.

User’s Guide

2 Distribution

2.1 What and Where

The current distribution of the TauP package is 1.0, dated September 8, 1998.

The distribution directory obtained from either the gzipped tar file or the jar file contains:

README
taup.jar
taup.html

exampleProperties
HISTORY

bin

doc

html

jacl

native

Maple

A future release will include the source code, but in order to avoid fragmentation of the code as well as
a test of the “Write Once, Run Anywhere” promise of Java, we are withholding it for the time being.

The taup.jar file contains everything needed for a working version of the package. This greatly simplifies
the installation process and reduces potential errors. See appendix A for detailed installation instructions.

getting started information

the jar file with all the classes

a simple web page that loads a rudimentary applet to use the TauP
package. Be warned that this is not really meant to be used over
the Internet as the download time for 1.5Mb may be too great and
most browsers do not yet support the 1.1 version of Java.
example properties file

change log

a directory with wrapper scripts appropriate for UNIX installations
a directory with Postscript and pdf versions of this manual.

a directory with the javadoc output from the source code, mainly
useful for writing new java programs that use the TauP package.
a directory with Jacl examples for accessing the TauP package di-
rectly within scripts.

a directory with a C library and example program that use the Java
Native Interface, providing a basic interface between C programs
and the TauP package.

a directory with Maple scripts showing the time and distance equa-
tions used.

2.2 Pros and Cons of the Current Release

The increased flexibility of this package provides significant advantages. Among these are:

1. The ability to use many different models. We include a variety of previously created models as
well as the option of creating your own models. A conscious effort was made to make as few
assumptions as possible about the nature of the model. Therefore, even models that have very

different structures than common global models can be used.

2. Phase parsing. Phases are not hard coded into the program, instead the phase names are parsed.
This creates an opportunity for the study of less common phases that are not present in previous
travel time calculators.

3. Programming interface for Java. Because of the use of the Java programming language, all of the
tools exist simultaneously as both applications and libraries. Thus, any Java code that has a need

User’s Guide 3

for travel times can load and manipulate the objects within this package. In addition, Jacl, the
Java implementation of the popular Tcl scripting language, provides a simple means of directly
accessing the public methods within the package.

Of course, there are always drawbacks. The main difficulty at present is speed. The tools in this package
are not as fast as natively compiled C' or FORTRAN. Execution speed, however, is not always the best
measure of usefulness. A extremely fast code that can’t use your velocity model, or that won’t run on
your machine is worse than a slower, but more flexible tool. In addition, processor speed is increasing at a
fast rate, and codes that were considered too slow yesterday, are usable today, and will have insignificant
execution times tomorrow. One last point is that there is a significant effort within the commercial world
to improve the speed of Java. The educational and research world will benefit significantly from these
efforts without incurring any cost.

2.3 Future Plans

There are several ideas for improvements that we may pursue, such as:

1. A GUIL A graphical user interface would greatly improve the usefulness of this package, especially
for non command line uses such as on the Macintosh or within web browsers.

2. Non-UNix platforms. In spite of Java’s platform neutral nature, our installation instructions and
reliance on command line style input and output limits the usability of the package on non-UNIx
operating systems. We would like to extend support as much as possible to other operating systems.
This should not be a large effort, and thus should be completed soon.

3. Use of the 7 function. In spite of the name, TauP does not yet use Tau splines. At present I do
not believe that this would provide a large improvement over the current linear interpolation, but
it is likely worth doing.

4. Web based applet. One of Java’s main uses currently is for the development of web based applets.
An applet is a small application that is downloaded and executed within a web browser. This is an
attractive opportunity and we have a simple example of one included in this distribution. There
are difficulties as the network time to download the model files may be unacceptable, as well as
the lack of support for Java 1.1 in current browsers. A client server architecture as well as the
continued improvement of commercial web browsers may be able to address these issues.

5. 1.1D models. There is nothing in the method that requires the source and receiver velocity models
to be the same. With this idea, a separate crustal model appropriate to each region could be used
for the source and receiver.

6. WKBJ synthetics. The calculation of 7 is a necessary step for WKBJ synthetics, and so this is a
natural direction. It likely involves significant effort, however.

User’s Guide 4

3 Tools
Tools included with the TauP package:

taup-time calculates travel times.
taup_pierce calculates pierce points at model discontinuities and
specified depths.

taup_path calculates ray paths, depth versus epicentral distance.
taup._curve calculates travel time curves, time versus epicentral
distance.

taup_table outputs travel times for a range of depths and dis-
tances in an ASCII file
taup_setsac puts theoretical arrival times into sac header

variables.
taup_create creates a .taup model from a velocity model.
taup_peek peeks at a saved model, useful only for debugging.

Each tool is a Java application and has an associated wrapper script to make execution easier. The
applications are machine independent but the wrapper scripts are UNIX specific /bin/sh scripts. For
example, to invoke TauP _Time, you could type

java -Dtaup.model.path=${TAUPPATH} edu.sc.seis.TauP.TauP Time -mod prem
or simply use the script that does the same thing,
taup-time -mod prem

Each tool has a -help flag that will print a usage summary, as well as a -version flag that will print
the version.

3.1 Default Parameters

Each of the tools use Java Properties to allow the user to specify values for various parameters. The
properties all have default values, which are overridden by values from a Properties file. The tools use
.taup in the current directory, which overwrites values read in from .taup in the user’s home directory.
In addition, many of the properties can be overridden by command line arguments.

The form of the properties file is very simple. Each property is set using the form
taup.property.name=value

one property per line. Comment lines are allowed, and begin with a #. Additionally, the names of all
of the properties follow a convention of prepending “taup.” to the name of the property. This helps to
avoid name collisions when new properties are added.

The currently used properties are:

taup.model.name the name of the initial model to be loaded, iasp91 by default.

User’s Guide 5

taup.model.path search path for models. There is no default, but the value in the .taup file will
be concatinated with any value of taup.model.path from the system properties. For example, the
environment variable TAUPPATH is put into the system property taup.model.path by the wrapper
shell scripts.

taup.source.depth initial depth of the source, 0.0 km by default.

taup.phase.list initial phase list, combined with taup.phase.file. The defaults are p, s, P, S, Pn, Sn,
PcP, ScS, Pdiff, Sdiff, PKP, SKS, PKiKP, SKiKS, PKIKP, SKIKS.

taup.phase.file initial phase list, combined with taup.phase.list. There is no default value, but the
default value for taup.phase.list will not be used if there is a taup.phase.file property.

taup.create.minDeltaP Minimum difference in slowness between successive slowness samples. This is
used to decide when to stop adding new samples due to the distance check. Used by TauP_Create
to create new models. The default is 0.1 sec/rad.

taup.create.maxDeltaP Maximum difference in slowness between successive slowness samples. This
is used to split any layers that exceed this slowness gap. Used by TauP _Create to create new
models. The default is 8.0 sec/rad.

taup.create.maxDepthInterval Maximum difference between successive depth samples. This is used
immediately after reading in a velocity model, with layers being split as needed. Used by TauP _Create
to create new models. The default is 115 km.

taup.create.maxRangeInterval Maximum difference between successive ranges, in degrees. If the
difference in distance for two adjacent rays is greater than this, then a new slowness sample is
inserted halfway between the two existing slowness samples. The default is 1.75 degrees.

taup.create.maxInterpError Maximum error for linear interpolation between successive sample in
seconds. TauP _Create uses this to try to insure that the maximum error due to linear interpolation
is less than this amount. Of course, this is only an approximation based upon an estimate of the
curvature of the travel time curve for surface focus turning waves. Used by TauP _Create to create
new models. The default is 0.03 seconds.

taup.create.allowInnerCoreS Should we allow J phases, S in the inner core? Used by TauP_Create
to create new models. The default is true. Setting it to false slightly reduces storage and model
load time.

Phase files, specified with the taup.phase.file property, are just text files with phase names, separated
by either spaces, commas or newlines. In section 4 the details of the phase naming convention are
introduced. By and large, it is compatible with traditional seismological naming conventions, with a few
additions and exceptions. Also, for compatiblity with ttimes, you may specify ttp, ttp+, tts, tts+,
ttbasic or ttall to get a phase list corresponding to the ttimes options.

3.2 TauP_Time

TauP_Time takes a .taup file generated by TauP_Create and generates travel times for specified phases
through the given earth model.

The usage is:

User’s Guide 6

piglet 1>taup_time -help
Usage: taup_time [arguments]
or, for purists, java edu.sc.seis.TauP.TauP_Time [arguments]

Arguments are:

-ph phase list -- comma separated phase list
-pf phasefile -- file containing phases
-mod[el] modelname —-- use velocity model "modelname" for calculations

Default is iasp91.
-h depth -- source depth in km
Distance is given by:
-deg degrees -- distance in degrees,
-km kilometers —- distance in kilometers,

assumes radius of earth is 6371km,

or by giving the station and event latitude and lonitude,
assumes a spherical earth,

-sta[tion] lat lon -- sets the station latitude and longitude
-evt lat lon -- sets the event latitude and longitude
-rayp -- only output the ray parameter

-time -- only output travel time

-o outfile -- output is redirected to "outfile"

-debug -- enable debugging output

-verbose -- enable verbose output

-version -- print the version

-help -- print this out, but you already know that!

The modelname is from modelname.taup, a previously created file from TauP _Create. If there is insuf-
ficient information given on the command line, then you start in interactive mode, otherwise it assumes
you only want one set of times.

The phases are specified on the command line with the -ph option, in a phase file with the -pf option, or
in a properties file. The model, phases, depth and distance can be changed within the interactive section
of TauP _Time.

For example: taup_time -mod prem -h 200 -ph S,P -deg 57.4
gives you arrival times for S and P for a 200 kilometer deep source at a distance of 57.4 degrees.

piglet 2>taup_time -mod prem -h 200 -ph S,P -deg 57.4

Model: prem
Distance Depth Phase Travel Ray Param Purist Purist

User’s Guide 7

(deg) (km) Name Time (s) p (s/deg) Distance Name
57.4 200.0 P 566.77 6.968 57.4 =P
57.4 200.0 S 1028.60 13.018 57.4 =38

3.3 TauP_Pierce

TauP _Pierce uses a .taup file generated by TauP _Create to determine the angular distances from the
epicenter at which the specified rays pierce discontinuities or specified depths in the model.

The usage is:

piglet 3>taup_pierce -help
Usage: taup_pierce [arguments]
or, for purists, java edu.sc.seis.TauP.TauP_Pierce [arguments]

Arguments are:

-ph phase list -- comma separated phase list
-pf phasefile -- file containing phases
-mod[el] modelname —-- use velocity model "modelname" for calculations

Default is iasp91.
-h depth -- source depth in km
Distance is given by:

-deg degrees -- distance in degrees,
-km kilometers —- distance in kilometers,
assumes radius of earth is 6371km,

or by giving the station and event latitude and lonitude,
assumes a spherical earth,

-sta[tion] lat lon -- sets the station latitude and longitude
-evt lat lon -- sets the event latitude and longitude

-az azimuth -- sets the azimuth (event to station)
used to output lat and lon of pierce points
if the event lat lon and distance are also
given. Calculated if station and event
lat and lon are given.

-baz backazimuth ~-- sets the back azimuth (station to event)
used to output lat and lon of pierce points
if the station lat lon and distance are also
given. Calculated if station and event
lat and lon are given.

User’s Guide 8

-rev -- only prints underside and bottom turn points, e.g. "~ and v
-turn -- only prints bottom turning points, e.g. v

-under -- only prints underside reflection points, e.g. ~

-pierce depth -- adds depth for calculating pierce points

-nodiscon -- only prints pierce points for the depths added with -pierce
-o outfile -- output is redirected to "outfile"

-debug -- enable debugging output

-verbose -- enable verbose output

-version -- print the version

-help -- print this out, but you already know that!

The -rev, —turn and -under flags are useful for limiting the output to just those points you care about.
The -pierce depth option allows you to specify a “pierce” depth that does not correspond to an actual
discontinuity. For instance, where does a ray pierce 300 kilometers above the CMB?

For example:

taup_pierce -mod prem -h 200 -ph S,P -deg 57.4

would give you pierce points for S, and P for a 200 kilometer deep source at a distance of 57.4 degrees.
While

taup_pierce -turn -mod prem -h 200 -ph S,P -deg 57.4

would give you just the points that each ray turns from downgoing to upgoing.

Using -rev would give you all points that the ray changes direction and -under gives just the underside
reflections.

Using the -pierce option
taup_pierce -mod prem -h 200 -ph S -sta 12 34.2 -evt -28 122 -pierce 2591 -nodiscon

would give you just the points at which S crossed a depth of 2591 kilometers from an event at (28°
S, 122° E) to a station at (12° N, 34.2° E). Because we specified the latitudes and longitudes, we also
get the latitudes and longitudes of the pierce points, useful for making a map view of where the rays
encounter the chosen depth. Here is the output, distance, depth, latitude and longitude, respectively.

> S at 1424.1 seconds at 93.7 degrees for a 200.0 km deep source in the prem model.
31.58 2591.00 -17.86 89.39
61.44 2591.00 -3.90 62.43

3.4 TauP _Path

TauP_Path takes a .taup file generated by TauP_Create and generates the path that the phases travel.
The output is in GMT (Wessel and Smith, 1995) “psxy” format, and is placed into the file “taup_path.gmt”.
If you specify the “-gmt” flag then this is a complete script with the appropriate “psxy” command
prepended, so if you have GMT installed, you can just:

taup_path -mod iasp91 -h 550 -deg 74 -ph S,ScS,sS,sScS -gmt

User’s Guide 9

sh taup_path.gmt
ghostview taup_path.ps

and you have a plot of the ray paths. To avoid possible plotting errors for phases like Sdiff, the ray
paths are interpolated to less than 1 degree increments.

The usage is:

piglet 5>taup_path -help

Usage: taup_path [arguments]
or, for purists, java edu.sc.seis.TauP.TauP_Path [arguments]

Arguments are:

-ph phase list -- comma separated phase list
-pf phasefile -- file containing phases
-mod[el] modelname -- use velocity model "modelname" for calculations

Default is iasp91.
-h depth -- source depth in km
Distance is given by:
-deg degrees -- distance in degrees,
-km kilometers -- distance in kilometers,

assumes radius of earth is 6371km,

or by giving the station and event latitude and lonitude,
assumes a spherical earth,

-sta[tion] lat lon -- sets the station latitude and longitude
-evt lat lon -- sets the event latitude and longitude
-gmt -- outputs path as a complete GMT script.

-o outfile -- output is redirected to "outfile"

—-debug -- enable debugging output

-verbose -— enable verbose output

-version -- print the version

-help -- print this out, but you already know that!

3.5 TauP_Curve

TauP_Curve creates a GMT style xy formated file of time versus distance. This can be used to create
the familar travel time curves, but for only the specified phases and depth. The curves are linearly
interpolated between known sample points, and can thus be used to get a feel for the coarseness of
sampling. For example, curves for s, S, ScS and Sdiff for a 500 kilometer deep event in PREM could be
generated by:

User’s Guide 10

taup_curve -mod prem -h 500 -ph s,S5,ScS,Sdiff -gmt

The -gmt option prepends a GMT psxy command to the output file, creating a runnable script instead
of just a data file. The output is put in taup_curve.gmt by default, so to view the results:

sh taup_curve.gmt
ghostview taup_curve.ps

The uasage is:
piglet 6>taup_curve -help
Usage: taup_curve [arguments]

or, for purists, java edu.sc.seis.TauP.TauP_Curve [arguments]

Arguments are:

-ph phase list -- comma separated phase list
-pf phasefile -- file containing phases
-mod[el] modelname -- use velocity model "modelname" for calculations

Default is iasp91.

-h depth -- source depth in km

-gmt -- outputs curves as a complete GMT script.

-reddeg velocity -- outputs curves with a reducing velocity (deg/sec).

-redkm velocity -- outputs curves with a reducing velocity (km/sec).

-o outfile -- output is redirected to "outfile" instead of taup_curve.gmt
-debug -- enable debugging output

-verbose -— enable verbose output

-version -- print the version

-help -- print this out, but you already know that!

3.6 TauP_SetSac

TauP _SetSac uses the depth and distance information in sac (Tull, 1989) file headers to put theoretical
arrival times into the t0—t9 header variables. The header variable for a phase can be specified with by
a dash followed by a number, for instance S-9 puts the S arrival time in t9. If no header is specified
then the time will be inserted in the first header variable not allocated to another phase, starting with
0. If there are no header variables not already allocated to a phase, then the additional phases will not
be added to the header. Note that this does not refer to times that are already in the SAcC file before
TauP_SetSac is run. They will be overwritten.

Note that triplicated phases are a problem as there is only one spot to put a time. For example, in
iasp91 S has three arrivals at 20 degrees but only one can be put into the choosen header. TauP_SetSac
assumes that the first arrival is the most important, and uses it. An improved method would allow a
phase to have several header variables associated with it, so that all arrivals could be marked. Currently
however, only the first arrival for a phase name is used.

User’s Guide 11

Warning: TauP _SetSac assumes the EVDP header has depth in meters unless the -evdpkm flag is used,
in which case kilometers are assumed. This may be a problem for users that improperly use kilometers
for the depth units. Due to much abuse of the sAc depth header units, a warning message is printed if the
depth appears to be in kilometers, i.e. it is < 1000, and -evdpkm is not used. This can be safely ignored
if the event really is less than 1000 meters deep. See the SAC manual (Tull, 1989) for confirmation.

The SAC files must have EVDP and the 0 marker set. Also, if GCARC or DIST is not set then TauP _SetSac
can calculate a distance only if STLA, STLO, EVLA and EVLO are set.

The user should be very careful about previously set header variables. TauP _SetSac will overwrite any
previously set t headers. A future feature may do more careful checking, but the current version make
no effort to verify that the header is undefined before writing.

The usage is:

piglet 7>taup_setsac -help
Usage: taup_setsac [arguments]
or, for purists, java edu.sc.seis.TauP.TauP_SetSac [arguments]

Arguments are:

-ph phase list -- comma separated phase list,
use phase-# to specify the sac header,
for example, ScS-8 puts ScS in t8

-pf phasefile -- file containing phases

-mod[el] modelname -- use velocity model "modelname" for calculations
Default is iasp91.

-evdpkm -- sac depth header is in km, default is meters
-debug -- enable debugging output

-verbose -— enable verbose output

-version -- print the version

-help -- print this out, but you already know that!
sacfilename [sacfilename ...]

Ex: taup_setsac -mod S_prem -ph S-8,ScS-9 wmq.r wmq.t wmq.z
puts the first S arrival in T8 and ScS in T9

3.7 TauP_Table

TauP _Table creates an ASCII table of arrival times for a range of depths and distances. Its main use is
for generating travel time tables for earthquake location programs such as LOCSAT. The -generic flag
generates a flat table with all arrivals at each depth and distance, one arrival per line. The -locsat flag
generates a LOCSAT style travel time table with only the first arrival of all the phases listed at each
distance and depth. Thus, the program must be run several times in order to generate files for several
phases. Also, both options write to standard out unless a file is given with the -o flag.

User’s Guide 12

The usage is:

piglet 1>taup_table -help
Usage: taup_table [arguments]
or, for purists, java edu.sc.seis.TauP.TauP_Table [arguments]

Arguments are:

-ph phase list -- comma separated phase list
-pf phasefile -- file containing phases
-mod[el] modelname -- use velocity model "modelname" for calculations

Default is iasp91.

-header filename -- reads depth and distance spacing data
from a LOCSAT style file.

-generic -- outputs a '"generic" ascii table

-locsat -- outputs a "locsat" style ascii table

-o outfile -- output is redirected to "outfile"

-debug -- enable debugging output

-verbose -— enable verbose output

-version -- print the version

-help -- print this out, but you already know that!

3.8 TauP _Create

TauP_Create takes a ASCII velocity model file, samples the model and saves the tau model to a binary
file. The output file holds all information about the model and need only be computed once. It is used
by all of the other tools. There are several parameters controlling the density of sampling. Their values
can be set with properties. See section 3.1, above.

The usage is:

piglet 8>taup_create -help
TauP_Create starting...
Usage: taup_create [arguments]
or, for purists, java edu.sc.seis.TauP.TauP_Create [arguments]

Arguments are:

To specify the velocity model:

-nd modelfile -- "named discontinuities" velocity file
-tvel modelfile -- ".tvel" velocity file, ala ttimes
-debug -- enable debugging output

-verbose -- enable verbose output

-version -- print the version

User’s Guide 13

-help -- print this out, but you already know that!

modelfile is the ASCII text file holding the velocity model. The -nd format is preferred because the
depths, and thus identities, of the major internal boundaries can be unambiguously determined, making
phase name parsing easier. See section 7 for an example. For compatiblity, we support the —tvel format
currently used by the latest ttimes package, (Kennett et al., 1995).

The output will be a file named after the name of the velocity file, followed by .taup. For example
taup_create -nd StdModels/prem.nd

produces prem.taup.

3.9 TauP Peek

TauP_Peek is mainly for debugging, it just lets you peek at the insides of a model generated with
TauP _Create. The user interface (if you can call it that) is pretty weak, but it came in handy as I was
building the codes.

The usage is:

taup_peek -mod[el] modelfile

User’s Guide 14

4 Phase naming in TauP

A major feature of the TauP Toolkit is the implementation of a phase name parser that allows the user
to define essentially arbitrary phases through the earth. Thus, the TauP Toolkit is extremely flexible in
this respect since it is not limited to a pre-defined set of phases. Phase names are not hard-coded into
the software, rather the names are interpreted and the appropriate propagation path and resulting times
are constructed at run time. Designing a phase-naming convention that is general enough to support
arbitrary phases and easy to understand is an essential and somewhat challenging step. The rules that
we have developed are described here. Most of phases resulting from these conventions should be familiar
to seismologists, e.g. pP, PP, PcS, PKiKP, etc. However, the uniqueness required for parsing results in
some new names for other familiar phases.

In traditional “whole-earth” seismology, there are 3 major interfaces: the free surface, the core-mantle
boundary, and the inner-outer core boundary. Phases interacting with the core-mantle boundary and the
inner core boundary are easy to describe because the symbol for the wave type changes at the boundary
(i.e. the symbol P changes to K within the outer core even though the wave type is the same). Phase
multiples for these interfaces and the free surface are also easy to describe because the symbols describe
a unique path. The challenge begins with the description of interactions with interfaces within the crust
and upper mantle. We have introduced two new symbols to existing nomenclature to provide unique
descriptions of potential paths. Phase names are constructed from a sequence of symbols and numbers
(with no spaces) that either describe the wave type, the interaction a wave makes with an interface, or
the depth to an interface involved in an interaction.

1. Symbols that describe wave-type are:

P compressional wave, upgoing or downgoing, in the crust or mantle
strictly upgoing P wave in the crust or mantle

shear wave, upgoing or downgoing, in the crust or mantle

strictly upgoing S wave in the crust or mantle

compressional wave in the outer core

compressional wave in the inner core

shear wave in the inner core

aHX®n wnd

2. Symbols that describe interactions with interfaces are:

m interaction with the moho

g appended to P or S to represent a ray turning in the crust

n appended to P or S to represent a head wave along the moho
c topside reflection off the core mantle boundary

i topside reflection off the inner core outer core boundary

underside reflection, used primarily for crustal and mantle interfaces

v topside reflection, used primarily for crustal and mantle interfaces

diff appended to P or S to represent a diffracted wave along the core mantle boundary
kmps appended to a velocity to represent a horizontal phase velocity (see 10 below)

3. The characters p and s always represent up-going legs. An example is the source to surface leg of
the phase pP from a source at depth. P and S can be turning waves, but always indicate downgoing
waves leaving the source when they are the first symbol in a phase name. Thus, to get near-source,
direct P-wave arrival times, you need to specify two phases p and P or use the “ttimes compatibility
phases” described below. However, P may represent a upgoing leg in certain cases. For instance,
PcP is allowed since the direction of the phase is unambiguously determined by the symbol c, but
would be named Pcp by a purist using our nomenclature.

User’s Guide 15

4. Numbers, except velocities for kmps phases (see 10 below), represent depths at which interactions
take place. For example, P410s represents a P-to-S conversion at a discontinuity at 410km depth.
Since the S-leg is given by a lower-case symbol and no reflection indicator is included, this represents
a P-wave converting to an S-wave when it hits the interface from below. The numbers given need
not be the actual depth, the closest depth corresponding to a discontinuity in the model will be
used. For example, if the time for P410s is requested in a model where the discontinuity was really
located at 406.7 kilometers depth, the time returned would actually be for P406.7s. The code
“taup_time” would note that this had been done. Obviously, care should be taken to ensure that
there are no other discontinuities closer than the one of interest, but this approach allows generic
interface names like “410” and “660” to be used without knowing the exact depth in a given model.

5. If a number appears between two phase legs, e.g. S410P, it represents a transmitted phase con-
version, not a reflection. Thus, S410P would be a transmitted conversion from S to P at 410km
depth. Whether the conversion occurs on the down-going side or up-going side is determined by
the upper or lower case of the following leg. For instance, the phase S410P propagates down as an
S, converts at the 410 to a P, continues down, turns as a P-wave, and propagates back across the
410 and to the surface. S410p on the other hand, propagates down as a S through the 410, turns as
an S, hits the 410 from the bottom, converts to a p and then goes up to the surface. In these cases,
the case of the phase symbol (P vs. p) is critical because the direction of propagation (upgoing or
downgoing) is not unambiguously defined elsewhere in the phase name. The importance is clear
when you consider a source depth below 410 compared to above 410. For a source depth greater
than 410 km, S410P technically cannot exist while S410p maintains the same path (a receiver side
conversion) as it does for a source depth above the 410.

The first letter can be lower case to indicate a conversion from an up-going ray, e.g. p410S is
a depth phase from a source at greater than 410 kilometers depth that phase converts at the
410 discontinuity. It is strictly upgoing over its entire path, and hence could also be labeled
p410s. p410S is often used to mean a reflection in the literature, but there are too many possible
interactions for the phase parser to allow this. If the underside reflection is desired, use the p~ 4108
notation from rule 7.

6. Due to the two previous rules, P410P and S410S are over specified, but still legal. They are
almost equivalent to P and S, respectively, but restrict the path to phases transmitted through
(turning below) the 410. This notation is useful to limit arrivals to just those that turn deeper
than a discontinuity (thus avoiding travel time curve triplications), even though they have no real
interaction with it.

7. The characters = and v are new symbols introduced here to represent bottom-side and top-side
reflections, respectively. They are followed by a number to represent the approximate depth of the
reflection or a letter for standard discontinuities, m, c or i. Reflections from discontinuities besides
the core-mantle boundary, c; or inner-core outer-core boundary, i, must use the ~ and v notation.
For instance, in the TauP convention, p~ 4108 is used to describe a near-source underside reflection.

Underside reflections, except at the surface (PP, sS, etc.), core-mantle boundary (PKKP, SKKKS,
etc.), or outer-core-inner-core boundary (PKIIKP, SKJJKS, SKIIKS, etc.), must be specified with the
~ notation. For example, P~ 410P and P~ mP would both be underside reflections from the 410km
discontinuity and the Moho, respectively.

The phase PmP, the traditional name for a top-side reflection from the Moho discontinuity, must
change names under our new convention. The new name is PvmP or Pvmp while PmP just describes a
P-wave that turns beneath the Moho. The reason the Moho must be handled differently from the
core-mantle boundary is that traditional nomenclature did not introduce a phase symbol change at
the Moho. Thus, while PcP makes sense since a P-wave in the core would be labeled K, PmP could

User’s Guide 16

10.

11.

have several meanings. The m symbol just allows the user to describe phases interaction with the
Moho without knowing its exact depth. In all other respects, the ~-v nomenclature is maintained.

Currently, = and v for non-standard discontinuities are allowed only in the crust and mantle.
Thus there are no reflections off non-standard discontinuities within the core, (reflections such as
PKKP, PKiKP and PKIIKP are still fine). There is no reason in principle to restrict reflections off
discontinuities in the core, but until there is interest expressed, these phases will not be added.
Also, a naming convention would have to be created since “p is to P” is not the same as “i is to I”.

Currently there is no support for PKPab, PKPbc, or PKPdf phase names. They lead to increased
algorithmic complexity that at this point seems unwarranted. Currently, in regions where triplica-
tions develop, the triplicated phase will have multiple arrivals at a given distance. So, PKPab and
PKPbc are both labeled just PKP while PKPdf is called PKIKP.

The symbol kmps is used to get the travel time for a specific horizontal phase velocity. For example,
2kmps represents a horizontal phase velocity of 2 kilometers per second. While the calculations for
these are trivial, it is convenient to have them available to estimate surface wave travel times or to
define windows of interest for given paths.

As a convenience, a ttimes phase name compatibility mode is available. So ttp gives you the phase
list corresponding to P in ttimes. Similarly there are tts, ttp+, tts+, ttbasic and ttall.

User’s Guide 17

5 Creating and Saving Velocity Models

5.1 Velocity Model Files

There are currently two variations of velocity model files that can be read. Both are piecewise linear
between given depth points. Support for cubic spline velocity models would be useful and is planned for
a future release.

The first format is that used by the most recent ttimes codes (Kennett et al., 1995), .tvel. This
format has two comment lines, followed by lines composed of depth, Vp, Vs and density, all separated
by whitespace. TauP ignores the first two lines of this format and reads the remaining lines.

The second format is based on the format used by Xgbm, (Davis and Henson, 1993a; Davis and Henson,
1993b). It is referred to here as the .nd format for “named discontinuities.” Its biggest advantage is
that it can specify the location of the major boundaries and this makes it the preferred format. The file
consists of two types of lines, those that specify velocity at a depth, and those that specify the name of
a discontinuity.

The first type of line has between 3 and 6 numbers on a line separated by whitespace. They are, in order,
depth in kilometers to the sample point, P velocity in kilometers per second, S velocity in kilometers
per second, density in grams per cubic centimeter, (), attenuation for compressional waves and Qs
attenuation for shear waves. Only depth, V,, and V; are required. The remaining parameters, while not
needed for travel time calculations, are included to allow the model to be used for other purposes in
the future. The model is assumed to be linear between given depths and repeated depths are used to
represent discontinuities.

The second type of line within the .nd format specifies one of the three major internal boundaries,
mantle for the crust-mantle boundary, outer-core for the outer core-mantle boundary, or inner-core for
the inner core-outer core boundary. These labels are placed on a line by themselves between the two
lines representing the sample points above and below the depth of the discontinuity. These help to
determine where a particular phase propagates. For instance, in a model that has many crustal and
upper mantle layers, from which discontinuity does the phase PmP reflect? Explicit labeling eliminates
potential ambiguity.

One further enhancement to these model file formats is the support for comments embedded within
the model files. As in shell scripting, everything after a # on a line is ignored. In addition, C style
/* ... */ and C++ style // ... comments are recognized.

A very simple named discontinuities model file might look like this:

/* below is a simple named discontinuities model. */
0.0 5.0 3.0 2.7

20 5.0 3.0 2.7

20 6.5 3.7 2.9

33 6.5 3.7 2.9

mantle # the word "mantle" designates that this is the moho
33 7.8 4.4 3.3

410 8.9 4.7 3.5

410 9.1 4.9 3.7

670 10.2 5.5 4.0

670 10.7 5.9 4.4

User’s Guide 18

2891 13.7 7.2 5.6

outer-core # "outer-core" designates that this is the core mantle boundary
2891 8.0 0.0 9.9

5149.5 10.3 0.0 12.2

inner-core # "inner-core" makes this the inner-outer core boundary

5149.5 11 3.5 12.7

6371 11.3 3.7 13

5.2 Using Saved Tau Models

There are three ways of finding a previously generated model file. First, as a standard model as part
of the distribution. Second, a list of directories and jar files to be searched can be specified with the
taup.model.path property. Lastly, the path to the actual model file may be specified. TauP searches
each of these places in order until it finds a model that matches the name.

1. Standard Model.

TauP first checks to see if the model name is associated with a standard model. Several standard
models are included within the distributed jar file. They include iasp91 (Kennett and Engdahl,
1991), prem (Dziewonski and Anderson, 1984), ak135 (Kennett, Engdahl, and Buland, 1995),
jb (Jeffreys and Bullen, 1940), 1066a (Gilbert and Dziewonski, 1975), 1066b (Gilbert and Dziewon-
ski, 1975), pwdk (Weber and Davis, 1990), sp6 (Morelli and Dziewonski, 1993) and herrin (Herrin,
1968). Lastly, we have included qdt, which is a coarsely sampled version of iasp91 (Kennett and
Engdahl, 1991). It is samller, and thus loads quicker, but has significantly reduced accuracy. We
will consider adding other models to the distribution if they are of wide interest. They are included
in the distribution jar file as StdModels/modelname.taup, but taup can locate them with just the
model name.

2. Within the taup.model.path property.

Users can create custom models, and place the stored models in a convenient location. If the
taup.model.path property includes those directories or jar files, then they can be located. The
search is done in the order of taup.model.path until a model matching the model name is found.
While taup.model.path is a Java property, the shell scripts provided translate the environment
variable TAUPPATH into this property. The user generally need not be aware of this fact except
when the tools are invoked without using the provided shell scripts. A more desirable method is
to set the taup.model.path in a properties file. See section 3.1 for more details.

The taup.model.path property is constructed in the manner of standard Java CLASSPATH which
is itself based loosely on the manner of the UNix PATH. The only real differences between CLASS-
PATH and PATH are that a jar file may be placed directly in the path and the path separator
character is machine dependent, UNIX is ‘" but other systems may vary.

The taup.model.path allows you to have directories containing saved model files as well as jar files
of models. For instance, in a UNIX system using the c shell, you could set your TAUPPATH to be,
(all one line):

setenv TAUPPATH /home/xxx/MyModels. jar:/home/xxx/ModelDir:
/usr/local/lib/localModels. jar

or you could place a line in the . taup file in your home directory that accomplished the same thing,
again all one line:

User’s Guide 19

taup.model.path=/home/xxx/MyModels. jar: /home/xxx/ModelDir:
/usr/local/lib/localModels. jar

If you place models in a jar, TauP assumes that they are placed in a directory called Models before
they are jarred. For example, you might use taup_create to create several taup models in the
Models directory and then create a jar file.

jar —-cf MyModels.jar Models

Including a “.” for the current working directory with the taup.model.path is not necessary since
we always check there, see 3 below, but it may be used to change the search order.

3. The last place TauP looks is for a model file specified on the command line. So, if you generate
newModel.taup and want to get some times, you can just say: taup_time -mod newModel.taup
or even just taup_time -mod newModel as TauP can add the taup suffix if necessary. A relative or
absolute pathname may precede the model, e.g. taup_time -mod ../0OtherDir/newModel.taup.

User’s Guide 20

6 Programming Interface

In addition to the command line interface, there are three ways to access the toolkit from within other
programs. The most straightforward is through Java. Using Jacl provides a very nice way to write
scripts that use the tools without repeatedly starting up the Java virtual machine and reloading models.
Lastly, there is a C language interface, but it is a bit less friendly. Descriptions of all three, with example
programs are below.

6.1 Java

The TauP package should be easily used by future Java programs. An example is given illustrating the
basics of using the package to generate travel times.

First, instantiate a TauP_Time object. This provides methods for generating and using travel times
and should be sufficient for most purposes. However, in order to actually generate anything useful, the
TauP_Time object needs a TauModel. It can be loaded within the constructor for TauP_Time as a Tau-
Model or with the model name. It can changed later using either the TauP_Time.setTauModel (TauModel)
method of TauP_Time, or by passing the modelname to TauP_Time.loadTauModel (String). The later
is likely easier, and has the advantage of searching for the model in the distribution jar file, the locations
in the taup.model.path property, and the current directory.

TauP_Time timeTool = new TauP_Time("mymodel");

In addition to the TauModel, a collection of phases is also needed. Again, there are several ways of
accomplishing this. parsePhaseList (String) is likely the easiest method. A String is passed with the
phase names separated by commas and the phases are extracted and appended. Phases can also be
input more directly with setPhaseNames(String[]) , which sets the phases to be those in the array,
and appendPhaseName (String) which appends a phase to the list. Note that these methods do not do
any checking to assure the names are valid phases, this is done at a later stage. Of additional interest
are clearPhaseNames () which deletes all current phase names, and getPhaseNames () which returns an
array of Strings with the phase names.

timeTool.parsePhaselList ("P,Pdiff,S,Sdiff ,PKP,SKS");

The next step is to correct the TauModel for the source depth. The TauModel is created with a surface
source, but can be corrected for a source at depth, given in kilometers, with the depthCorrect (double)
method. In addition, if a correction was actually needed, it calls recalcPhases () which verifies that the
times and distances for the phases in the phase list are compatible with the current model and depth.
recalcPhases () is also called by calculate() in case changes were made to the list of phase names.

timeTool.depthCorrect(100.0);

It remains only to calculate arrivals for a particular distance using the calculate(double) method,
which takes an angular distance in degrees. The arrivals are stored as Arrival objects, which contain
time, dist, rayParam, sourceDepth, and name fields. The Arrivals can be accessed through either the
getArrival (int) method which returns the ith arrival, or the getArrivals() method which returns
an array of Arrivals. Of additional interest is the getNumArrivals() method that returns the number
of arrivals.

timeTool.calculate(40);
Arrival[] arrivals = timeTool.getArrivals();

User’s Guide 21

for (int i=0; i<arrivals.length; i++) {
System.out.println(arrivals[i].getName+" arrives at "+
(arrivals[i] .getDist*180.0/Math.PI)+" degrees after "+
arrivals[i] .getTime+" seconds.");

It is important to realize that all internal angular distances are stored as radians, hence the conversion,
and times in seconds. This also means that the ray parameters are stored as seconds per radian.

6.2 Jacl

One of the problems with Java based tools is that there is overhead associated with starting a Java
program due to the fact that the virtual machine must first be started. While with normal interactive
computing this is not such a large problem, it can become very wastful when repeated calling a tool from
within a script. Significant time savings can be had if the tool and its associated virtual machine can
be kept alive for the duration of the script. Jacl, a Java implementation of the popular Tool Command
Language or Tcl, makes writing scripts that use the TauP Toolkit easy, and allows one instance of both
the virtual machine as well as the tool to remain active for the whole script. You may download jacl
from http://www.scriptics.com/java.

Jacl allows a script to create Java objects, call any public method of those objects and manipulate their
attributes. Thus, creating a script to do many similar calcuations or a custom application that makes
these tools usable in the way you want is as easy as writing a tcl script. We present a brief walkthrough
of a Jacl script that calculates pierce points for numerous station event pairs.

The first lines of the script should start up jacl.

#!/bin/sh
#\
exec jacl $0 $x

Next, we will set up latitudes and longitudes for our stations and events. This was modified from a script
that read from a CSS database, but in order to keep the script self contained, we have hardwired it here.

set slat(0) 35
set slon(0) -5
set elat(0) 125
set elon(0) 5

set edepth(0) 100
set elat(1l) -10
set elon(1) 110
set edepth(1) 100
set elat(2) 40
set elon(2) 140
set edepth(2) 200
set elat(3) 65
set elon(3) -5
set edepth(3) 10

User’s Guide 22

Now we start up the pierce tool with the prem model and add the phases we are interested in. We will
only do P and S in PREM for simplicity.

set taup [java::new [list edu.sc.seis.TauP.TauP_Pierce String] "prem"]
$taup clearPhaseNames
$taup {parsePhaselist java.lang.String} "P,S"

Here we get, and then loop over, all the discontinuities in the model in order to find the one closest to
400 kilometers depth.

set disconArray [$taup getDisconDepths]
set maxDiff 99999999
set bestDepth 0
for {set i 0} {$i < [$disconArray length]} {incr i} {
set depth [$disconArray get $i]
if { [expr abs($depth - 400)] < $maxDiff} {
set maxDiff [expr abs($depth - 400)]
set bestDepth $depth

Loop over all events and stations and output the pierce point at the 400 kilometer discontinuity. We
use the getLastPiercePoint(depth) method as we want the receiver side pierce point. If we wanted the
source side point we could have used the getFirstPiercePoint(depth) method.

for {set eventIndex 0} {$eventIndex < [array size elat]} {incr eventIndex} {
$taup depthCorrect $edepth($eventIndex)
for {set stalndex 0} {$stalndex < [array size slat]} {incr stalIndex} {
set gcarc [java::call edu.sc.seis.TauP.SphericalCoords distance \
$elat ($eventIndex) $elon($eventIndex) \
$slat($stalndex) $slon($stalndex)]
set az [java::call edu.sc.seis.TauP.SphericalCoords azimuth \
$elat ($eventIndex) $elon($eventIndex) \
$slat($stalndex) $slon($stalndex)]
$taup calculate $gcarc
set numArrivals [$taup getNumArrivals]

if {$numArrivals == 0} {
puts "No arrivals for event $eventIndex"
}
for {set k 0} {$k< $numArrivals} {incr k} {
set OneArrival [$taup getArrival $k]
set name [$0neArrival getName]

if [catch \

{set OnePierce [$0neArrival getLastPiercePoint $bestDepth] }] {
puts "$name doesn’t pierce $bestDepth for event $eventIndex"
continue

User’s Guide 23

set dist [$0nePierce getDist]

set dist [expr $dist * (180./3.14159)]

set plat [java::call edu.sc.seis.TauP.SphericalCoords latFor \
$elat ($eventIndex) $elon($eventIndex) $dist $az]

set plon [java::call edu.sc.seis.TauP.SphericalCoords lonFor \
$elat ($eventIndex) $elon($eventIndex) $dist $az]

puts [format "(%-7.3f, %-7.3f) $name from event number $eventIndex" \
$plat $plon]

And here is the output:

piglet 56>./pierce.jacl

No arrivals for event O

7.218 , 36.679) P from event number
7.214 , 36.676) S from event number
2.185 , 35.266) P from event number
-2.205 , 35.264) S from event number
3.262 , 34.492) P
3.142 , 34.457) S

from event number

W WNNE -

from event number

This script, along with another simple travel time script, is included in the distribution in the jacl
subdirectory.

6.3 C

A C language interface to the TauP package is provided. A shared library libtaup.so, provides access to
the core functionality for generating travel times. An example program using these interface routines is
also provided, gettimes.c.

The native interface is distributed as C source code that you must compile on your local machine. A
makefile is provided to generate a shared library and an example code to call the library. The makefile
was created for use under Solaris, but doesn’t do anything particularly special, and should be easily
modifiable for other operating systems.

Of course, the system must be able to find this library, as well as the Java libraries. Under Solaris, this
can be accomplished with the LD_LIBRARY PATH environment variable. Other systems may vary.

The current C interface only provides method calls for the most basic operations for getting travel times.
If less common methods need to be called then a quick look at the source code in the native directory
should be sufficient to create new hooks into those methods.

The state of the travel time calculator is preserved from call to call within a TauPStruct structure.
This contains references to the java virtual machine, each of the method calls and the current model.
This structure is always the first argument to all of the method calls. While I believe this is the least
complicated style of interaction, it is not particularly memory or processor efficient for uses involving
more than one travel time calculator active simultaneously. Primarily this is due to having more than

User’s Guide 24

one java virtual machine running at the same time. Still, it is a good example of how C can interact
with Java.

The currently implemented method calls are:

TauPInit initializes the java virtual machine and properly fills in the TauPStruct passed as the first
argument. The second argument is the name of the model to be used. The method signature is
int TauPInit(TauPStruct *taupptr, char *modelName) ;

TauPSetDepth sets the source depth within the model. A initialized TauPStruct is passed as the first
argument, with the source depth passed as the second. With the exception of creating a new model,
this is the most CPU intensive operation. The method signature is
int TauPSetDepth(TauPStruct taup, double depth) ;

TauPClearPhases clears any previously added phases. This should be followed by a call to TauPAp-
pendPhases, below, to add new phases. An initialized TauPStruct is passed as the first argument.
The method signature is
int TauP ClearPhases(TauPStruct taup) ;

TauPAppendPhases appends new phases for calculation. An initialized TauPStruct is passed as the
first argument and the phase names are passed as a comma, or space separated string in the second
argument. All of the phase names that can be used in the interactive code can be used here. Also,
duplicates are checked for and eliminated before being added. The method signature is
int TauPAppendPhases(TauPStruct taup, char *phaseString) ;

TauP Calculate calculates all arrivals for all of the current phases for the distance specified in the second
argument. An initialized TauPStruct is passed as the first argument. The method signature is
int TauP Calculate(TauPStruct taup, double degrees) ;

TauPGetNumArrivals returns the number of arrivals found with the last call to TauPCalculate,
above. A negative number indicates an error. An initialized TauPStruct is passed as the first
argument. The method signature is
int TauPGetNumArrivals(TauPStruct taup) ;

TauPGetArrival returns the ith arrival found with the last call to TauPCalculate, above. The arrival
is returned as a jobject, which is mainly useful if it will be used as an argument for another java
method call. NULL is returned if an error occurs. An initialized TauPStruct is passed as the first
argument. The method signature is
jobject TauPGetArrival(TauPStruct taup, int arrivalNum) ;

TauPGetArrivalName returns the name of the ith arrival found with the last call to TauPCalculate,
above, as a character pointer. An initialized TauPStruct is passed as the first argument and the
arrival number is passed as the second. NULL is returned if there is an error. The method signature
is
char * TauPGetArrivalName(TauPStruct taup, int arrivalNum) ;

TauP GetArrivalPuristName returns the purist’s version of the name of the ith arrival found with
the last call to TauPCalculate, above, as a character pointer. The puris’s name replaces depths
with the true depth of interfaces in the phase name, for example Pv410P might really be Pv400P.
An initialized TauPStruct is passed as the first argument and the arrival number is passed as the
second. NULL is returned if there is an error. The method signature is
char * TauPGetArrivalPuristName(TauPStruct taup, int arrivalNum) ;

User’s Guide 25

TauPGetArrivalTime returns the travel time of the ith arrival found with the last call to TauPCal-
culate, above. An initialized TauPStruct is passed as the first argument and the arrival number is
passed as the second. A negative number is returned if there is an error. The method signature is
double TauPGetArrivalTime(TauPStruct taup, int arrivalNum) ;

TauPGetArrivalDist returns the travel distance of the ith arrival found with the last call to TauP-
Calculate, above. An initialized TauPStruct is passed as the first argument and the arrival number
is passed as the second. A negative number is returned if there is an error. The method signature
is
double TauPGetArrivalDist(TauPStruct taup, int arrivalNum) ;

TauPGetArrivalRayParam returns the ray parameter of the ith arrival found with the last call to
TauPCalculate, above. An initialized TauPStruct is passed as the first argument and the arrival
number is passed as the second. A negative number is returned if there is an error. The method
signature is
double TauPGetArrivalRayParam(TauPStruct taup, int arrivalNum) ;

TauPGetArrivalSourceDepth returns the source depth of the ith arrival found with the last call to
TauPCalculate, above. An initialized TauPStruct is passed as the first argument and the arrival
number is passed as the second. A negative number is returned if there is an error. The method
signature is
double TauPGetArrivalSourceDepth(TauPStruct taup, int arrivalNum) ;

TauPDestroy destroys the java virtual machine and frees the used memory. An initialized TauPStruct
is passed as the first argument. A nonzero error is returned if there is an error. The method
signature is
int TauPDestroy(TauPStruct taup) ;

User’s Guide 26

7 Examples

Here is a walk through of a use of the tools on a UNIX system.

7.1 Velocity Model Files

First, we want to create a model. There are several models contained within the TauP distribution, but
for completeness we will create a new one from scratch.

A very simple model file might look like this:

0.0 5.0 3.0 2.7
20 5.0 3.0 2.7
20 6.5 3.7 2.9
33 6.5 3.7 2.9
mantle

33 7.8 4.4 3.3
410 8.9 4.7 3.5
410 9.1 4.9 3.7
670 10.2 5.5 4.0
670 10.7 5.9 4.4
1000 11.5 6.4 4.6
2000 12.9 6.9 5.1
2891 13.7 7.2 5.6
outer-core

2891 8.0 0.0 9.9
3500 9.0 0.0 10.8

5149.5 10.3 0.0 12.2
inner-core

5149.5 11 3.5 12.7
5500 11.1 12.9
6371 11.3 3.7 13

w
)

Note that we have chosen the “named discontinuities” format so that we could specify the location of

the major boundaries. The file consists of two types of lines, those that specify velocity at a depth, and
those that specify the name of a discontinuity. See section 5.1 for more details.

7.2 Creating The Model

If we put this into a file called “simpleMod.nd” then we can run taup_create to create a model sampling.

piglet 2>taup_create -nd simpleMod.nd
TauP_Create starting...

filename =./simpleMod.nd

piglet 3>1s

simpleMod.nd simpleMod. taup

User’s Guide 27

The file simpleMod. taup contains all of the information about the model. This process needs to be done
only once for each velocity model.

7.3 Travel Times

Now that we have the model sampled, computing travel times is easy. We will use taup_time to get the
travel times for some familiar phases, P, S, PcP, ScS, SKS, sS, and SS in our simple model for a 143.2
kilometer deep source and at a distance of 75 degrees. We use the “-mod” command line flag to specify
the model, and then do the rest after it starts.

First taup-time reads a standard Java Properties file, “.taup”, that it finds in my home directory. See
section 3.1 for more details. If there are phases you are interested in frequently, or model you use often,
or source depth, then you can put them in this file as your defaults. Then we enter a depth for the
source, 143.2 kilometers, using the h option. By default, the model is for a surface source.

Some phase names have been read in from the file, but we want to specify our own phase list, so we use
the ‘c’ option to clear the phases and are prompted to enter the new phases. Enter them separated by
commas or spaces. After that we just need to enter the distance, 75 degrees. The arrivals are printed as
distance, depth, phase name, time and then ray parameter. The last two entries represent a “purists”
view of the distance and phase name. For instance, PKKP travels the long way around the earth, and
so the true distance traveled is not the event to station distance. The purist’s view of the name is to
show the difference between the true depths of discontinuities and the depth sepcified in the phase name.
For instance, Pv400P in our simple model is really a reflection off of the discontinuity at 410 kilometers
depth. The purist’s name reflects this and is preceeded by an asterick to make the difference easier to
notice. The distance is repeated to make it easier to parse the output from within scripts.

piglet 4>taup_time -mod simpleMod
Enter:

h for new depth

to recalculate

to append phases,

to clear phases

to list phases

for new station lat lon
for new event lat lon
for new azimuth

for new back azimuth
for new model or

to quit.

Q B o o wn - od R

Enter Distance or Option [hrpclseabmq]l: h

Enter Depth: 143.2

Enter Distance or Option [hrpclseabmq]: c

Enter phases (ie P,p,PcP,S): P,S,PcP,ScS,SKS,sS,SSPKKP$ ¢¢ $% $% &,PKKP
Enter Distance or Option [hrpclseabmq]l: 75

Model: simpleMod
Distance Depth Phase Travel Ray Param Purist Purist
(deg) (km) Name Time (s) p (s/deg) Distance Name

User’s Guide 28

75.0 143.2 P 686.33 5.721 75.0 =P

75.0 143.2 PcP 700.51 4.312 75.0 = PcP
75.0 143.2 S 1263.17 11.040 75.0 =8

75.0 143.2 SKS 1293.35 7.283 75.0 = SKS
75.0 143.2 ScS 1298.74 8.135 75.0 = ScS
75.0 143.2 sS 1326.73 11.152 75.0 = sS
75.0 143.2 SS 1571.74 14.640 75.0 =SS

Enter Distance or Option [hrpclseabmq]: q
We could also have done this same example by just using the command line options.

piglet 5>taup_time -mod simpleMod -h 143.2 -deg 75 -ph P,S,PcP,ScS,SKS,sS,SS,PKKP

Model: simpleMod

Distance Depth Phase Travel Ray Param Purist Purist
(deg) (km) Name Time (s) p (s/deg) Distance Name
75.0 143.2 P 686.33 5.721 75.0 =P
75.0 143.2 PcP 700.51 4.312 75.0 = PcP
75.0 143.2 S 1263.17 11.040 75.0 =8
75.0 143.2 SKS 1293.35 7.283 75.0 = SKS
75.0 143.2 ScS 1298.74 8.135 75.0 = ScS
75.0 143.2 sS 1326.73 11.152 75.0 = sS
75.0 143.2 SS 1671.74 14.640 75.0 =SS

7.4 Pierce Points

Now, where are the turning points for these rays? We can run taup_pierce with the “-turn” flag and find
out. Lets specify the parameters on the command line. The output is distance in degrees followed by
depth in kilometers. Note that SS has two turning points.

piglet 7>taup_pierce -mod simpleMod -h 143.2 -deg 75 \

? -ph P,S,PcP,ScS,SKS,sS,SS,PKKP -turn

> P at 686.33 seconds at 75.0 degrees for a 143.2 km deep source in the simpleMod model.

37.23 2110.32

S at 1263.17 seconds at 75.0 degrees for a 143.2 km deep source in the simpleMod model.

37.20 2005.24

> PcP at 700.51 seconds at 75.0 degrees for a 143.2 km deep source in the simpleMod model.
37.30 2891.00

> ScS at 1298.74 seconds at 75.0 degrees for a 143.2 km deep source in the simpleMod model.
37.29 2891.00

> SKS at 1293.35 seconds at 75.0 degrees for a 143.2 km deep source in the simpleMod model.

37.31 2975.11

sS at 1326.73 seconds at 75.0 degrees for a 143.2 km deep source in the simpleMod model.

37.81 1971.17

SS at 1571.74 seconds at 75.0 degrees for a 143.2 km deep source in the simpleMod model.

\4

\4

\4

User’s Guide 29

18.09 1001.76
56.03 1001.76

7.5 Path

Perhaps now we should make a plot of the paths. Lets use only command line options and send the
output to the file “simpleModPaths.gmt” instead of the default “taup_path.gmt”.

piglet 8>taup_path -mod simpleMod -h 143.2 -deg 75 \

? -ph P,S,PcP,ScS,SKS,sS,SS,PKKP \

? -o simpleModPaths.gmt -gmt

piglet 9>1s

simpleMod.taup simpleMod.nd simpleModPaths.gmt
piglet 10>sh simpleModPaths.gmt

piglet 11>1s

simpleMod. taup simpleModPaths.ps

simpleMod.nd simpleModPaths.gmt

Now we have a Postscript file, simpleModPaths.ps, that we can look at or print. Notice that we used
the -gmt flag so that the output is a complete GMT script. If you don’t use -gmt, then the output is
just the XY points, which might be later used by another script. Of course, this only works if you have
GMT installed.

7.6 Travel Time Curves

If we want to see the travel time curves for these phases, we can do that using taup_curve. It works very
similarly to taup_path except that we don’t need to specify a distance.

piglet 12>taup_curve -mod simpleMod -h 143.2 -ph P,S,PcP,ScS,SKS,sS,SS,PKKP \
? -o simpleModCurves.gmt -gmt

piglet 13>1s

simpleModCurves.gmt simpleMod.nd simpleModPaths.gmt
simpleMod.taup simpleModPaths.ps

piglet 14>sh simpleModCurves.gmt

piglet 15>1s

simpleMod.nd simpleModCurves.gmt simpleModPaths.gmt

simpleMod. taup simpleModCurves.ps simpleModPaths.ps

Again we have a Postscript file to view. Both of these commands generate scripts that are ok for a quick
look, but you will almost certainly want to modify them for any important use.

User’s Guide 30

A Installing

The installation for TauP under UNIX is quite simple. And with Java’s platform independence, the
package should be usable on a Mac or Windows machine. Unfortunately at this point installation
procedures for those machines do not exist.

1. Install a Java 1.1 virtual machine. If your system already has Java 1.1 or better installed then you
can skip to the next step. You can test this with “java -version”. If it isn’t there or the version is
less than 1.1 you need to get and install Java.

If you have a Sun Solaris workstation, you need only down load the version from JavaSoft. Point
your browser to http://www.javasoft.com/products/ and download either the Java Development
Kit or the Java Runtime Environment.

The Java Runtime Environment (jre) is the smaller of the two, only allowing you to run java
applications and applets. The Java Development Kit (jdk) is larger but allows you to compile and
run java programs. Unless space is at a premium, I suggest getting the jdk.

There are ports of Java for many other operating systems, and as long as they are a Java 1.1 or
better compatible implementation, the tools should execute correctly. JavaSoft maintains a list of
these ports at

http://www javasoft.com/cgi-bin/java-ports.cgi.

Just follow the instructions that come with your Java distribution.

2. Download TauP.X.X.tar.gz or TauP.X.X.jar. Make sure to get the most recent version, replacing
the X’s in the file name. They can be found at

http://wuw.geol.sc.edu/seis/software

3. Unpack the distribution.
gunzip TauP.tar.gz
tar -xvf TauP.tar
or
jar -xvf TauP.X.X.jar
This will create a directory called TauP. Inside will be the following:

User’s Guide

31

README getting started information

taup.jar the jar file with all the classes

taup.html a simple web page that loads a rudimentary applet to use the TauP
package. Be warned that this is not really meant to be used over
the Internet as the download time for 1.5Mb may be too great and
most browsers do not yet support the 1.1 version of Java.

exampleProperties example properties file

HISTORY change log

bin a directory with wrapper scripts appropriate for UNIX installations

doc a directory with Postscript and pdf versions of this manual.

html a directory with the javadoc output from the source code, mainly
useful for writing new java programs that use the TauP package.

jacl a directory with example Jacl scripts for accessing the TauP
package.

native a directory with a C library and example program that use the Java
Native Interface, providing a basic interface between C programs
and the TauP package.

Maple a directory with Maple scripts showing the time and distance equa-

tions used.

4. Put the taup.jar file someplace. It really doesn’t matter where, although a central place might
make administration easier, /usr/local/classes or /usr/local/lib are good choices. If you don’t have
superuser privileges then your home directory is fine.

5. Add the location of taup.jar to your CLASSPATH environment variable. This should be done in

your .cshre or .login. For instance, if you put taup.jar in /usr/local/classes, then you could set the
CLASSPATH to be:

setenv CLASSPATH /usr/local/classes/taup.jar:/usr/local/jdk1.1.6/1lib/classes.zip

This should be all one line, of course. The java virtual machine also uses the CLASSPATH envi-
ronment variable to find its class files, so make sure this is set up correctly.

6. Put the wrapper scripts in a directory referenced by your PATH environment variable, /usr/local/bin
for instance. These wrapper scripts are not essential, but they cut down on typing. They are in
the bin directory of the distribution and are simple UNIX sh scripts. Of course, they will only work
on UNIX.

7. Lastly, you may need to either source your .login and .cshrc files or execute the rehash command
to make the shell reevaluate the contents of your PATH.

That’s it. If you have problems or encounter bugs, please mail them to me. Please try to be as specific
as possible. I am also interested in ideas for additional features that might make this a more useful
program. Of course, I can make no promises, but I would be glad to hear about them.

I can be reached via email at crotwell@seis.sc.edu.

User’s Guide 32

B Troubleshooting

There are a few idiosyncrocies about the codes and Java in general that you may run into.

1. Out of memory errors. By default Java sets its maximum memory to be 16 megabytes. For most
uses this is sufficient, but some very complicated models using a large number of phases may
exceed this limit. A simple fix is to change the maximum memory to be a larger amount. The -mx
command line argument to the java command does this. So, to set the maximum amount of memory
to 32 megabytes you could say java mx32m edu.sc.seis.TauP.TauP Path. For convenience you
may wish to make this change more permanent by adding it to the scripts, i.e. taup_time, etc.

2. Garbled jar files. Care should be taken with the jar files when transferring them from one operating
system to another. Certain file transfer utilities make an attempt to fix text files by changing
RETURN LINEFEED sequences to just LINEFEED or just RETURN or vice versa. This is useful for real
text files, but dangerous for jar files. I have noticed this when transferring files between UNIX and
Macintosh, and it likely can happen between any two operating systems with differing end of line
identifiers. Using binary mode for ftp transactions is likely wise.

3. Trouble with applet and appletviewer. There have been problems with appletviewer and the applet
related to the CLASSPATH. For the applet to work, taup.jar needs to be in the CLASSPATH.
However, other files in the CLASSPATH may confuse either the applet when it looks for models,
or cause the appletviewer to not run at all with any applets. If you experience any problems with
TauPApplet or appletviewer in general, try running with a simplified CLASSPATH. For example,
on UNIX machines in the csh:

setenv CLASSPATH /path/to/the/jar/taup.jar
appletviewer taup.html

User’s Guide 33

References

Buland, R. and C. H. Chapman (1983). The Computation of Seismic Travel Times, Bull. Seism. Soc.
Am. 73(5), 1271-1302.

Crotwell, H. P., T. J. Owens, and J. Ritsema (1998). The TauP ToolKit: Flexible Seismic Travel-Time
and Raypath Utilities, Seismological Research Letters. In Preperation.

Davis, J. P. and 1. H. Henson (1993a). Development of an X-Windows tool to compute Gaussian bean
synthetic seismograms. Technical Report TGAL-93-03, Phillip Laboratory, Hancom AFB, MA.

Davis, J. P. and I. H. Henson (1993b). User’s Guide to Xgbm: An X-Windows System to compute
Gaussian bean synthetic seismograms (1.1 ed.). Alexandria, VA: Teledyne Geotech Alexandria
Laboratories.

Dziewonski, A. M. and D. L. Anderson (1984). Structure, elastic and rheological properties and density
of the earth’s interior, gravity and pressure. In K. Fuch and H. Soffel (Eds.), Landoldt-Bénstein,
Group V, Volume 2a, pp. 84-96. Berlin: Springer.

Gilbert, F. and A. M. Dziewonski (1975). An application of normal mode theory to the retrieval of
structural parameters and source mechanisms from seismic spectra, Philisophical Transactions of
the Royal Society, London A 278, 187-269.

Herrin, E. (1968). 1968 seismological tables for P phases, Bull. Seism. Soc. Am. 58(4), 1193-1241.

Jeffreys, H. and K. E. Bullen (1940). Seismological Tables. London: British Association for the Ad-
vancement of Science, Burlington House.

Kennett, B. L. N. and E. R. Engdahl (1991). Traveltimes for global earthquake location and phase
identification, Geophysical Journal International 105, 429-465.

Kennett, B. L. N, E. R. Engdahl, and R. Buland (1995). Constraints on seismic velocities in the Earth
from traveltimes, Geophysical Journal International 122, 108-124.

Morelli, A. and A. M. Dziewonski (1993). Body wave traveltimes and a spherically symmetric P- and
S-wave velocity model, Geophysics Journal International 112(2), 178-194.

Tull, J. E. (1989). SAC - Seismic Analysis Code: User’s Manual (Revision 2 ed.). Livermore, CA:
Lawrence Livermore National Laboratory.

Weber, M. and J. P. Davis (1990). Evidence of a laterally variable lower mantle structure from P- and
S-waves, Geophysics Journal International 102(1), 231-255.

Wessel, P. and W. H. F. Smith (1995). New Version of the Generic Mapping Tools released, Fos 76,
329.

